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Effects of group-velocity mismatch and cubic-quintic
nonlinearity on cross-phase modulation instability in
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The synthetic effects of group-velocity mismatch and cubic-quintic nonlinearity on cross-phase modulation
induced modulation instability in loss single-mode optical fibers have been numerically investigated. The
results show that the quintic nonlinearity plays a role similar to the case of neglecting the group-velocity
mismatch in modifying the modulation instability, namely, the positive and negative quintic nonlinearities
can still enhance and weaken the modulation instability, respectively. The group-velocity mismatch can
considerably change the gain spectrum of modulation instability in terms of its shape, peak value, and
position. In the normal dispersion regime, with the increase of the group-velocity mismatch parameter,
the gain spectrum widens and then narrows, shifts to higher frequencies, and the peak value gets higher
before approaching a saturable value. In the abnormal dispersion regime, two separated spectra may occur
when the group-velocity mismatch is taken into account. With the increase of the group-velocity mismatch
parameter, the peak value of the gain spectrum gets higher and shorter before tending to a saturable value
for the first and second spectral regimes, respectively.
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It is well known that the interplay between the nonlin-
earity (self-phase modulation or cross-phase modulation)
and dispersion effects inside optical fibers can result in a
breakup of the continuous wave (CW) or quasi-CW op-
tical wave into a train of ultra-short pulses. Since 1968,
this so-called modulation instability has been extensively
studied in various cases[1−20], for it can be used in many
fields, such as optical switching[4], formation of chains
of soliton like optical pulses[5,6], generation of super-
continuum spectrum[7], measurement of nonlinear and
chromatic dispersion parameters of optical fibers[8], etc..
On the other hand, however, previous researches have
also shown that, whether self-phase or cross-phase mod-
ulation induced modulation instability may considerably
degrade the performances of the optical fiber communi-
cation systems[9,10].

Self-phase modulation[11−13] and cross-phase
modulation[14−16] induced modulation instability in op-
tical fibers have both been extensively studied in the
case of cubic nonlinearity of the refractive index. How-
ever, as previous work proposed[21], as high incident
optical intensities or materials with very high nonlinear
coefficients such as semiconductor doped glass optical
fibers are considered, it is necessary to take high-order
nonlinearities into consideration. The lowest high-order
nonlinearity in optical fibers is quintic one. Thus, Tanev
et al. investigated the solitary wave propagation and
bistability behavior in optical fibers with cubic-quintic
nonlinearity[21]. In addition, self-phase[18,19] and cross-
phase modulation[3,20] induced modulation instability
have also been investigated in the case of cubic-quintic
nonlinearity. However, to our best knowledge, there
are no reports on the synthetic effects of group-velocity
mismatch and cubic-quintic nonlinearity on cross-phase
modulation instability in optical fibers. Agrawal in-
dicated that group-velocity mismatch can considerably

influence cross-phase modulation instability[17].
When two optical pulses co-propagate in optical fibers,

the linearised coupled nonlinear Schrödinger equation
can be taken as[20]
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where aj (j = 1, 2) is the perturbation amplitude, Vgj

the group velocity, β2j the second-order group velocity
dispersion coefficient, t the time coordinate, z the prop-
agating distance, αj the loss coefficient of the optical
fiber, Pj the incident optical power, and γ1j and γ2j the
third- and fifth-order nonlinear coefficients, respectively.

Adopting the well-known linear stability analysis[15,20],
the dispersion relation can be obtained as[(

k − Ω
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][(
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]
= CXPM, (2)

where k and Ω are the wave number and angle frequency
of the modulation wave, respectively. It is obvious that
this expression is completely the same as the case of cubic
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nonlinearity[17]. However, the definitions of the param-
eters f1, f2, and CXPM are quite different, which read
as
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where

P ′
j = Pj exp (−αjz) . (5)

Equation (2) is a fourth-degree polynomial with respect
to wave number k. Under certain condition, if the roots
of Eq. (2) make k become complex, modulation insta-
bility occurs and the corresponding power gain equals
2Im(k). Im stands for the imaginary part. If either
CW or sufficiently long pulses are input in the fiber,
the group velocity mismatch can be neglected[14], i.e.,
Vg1 ≈ Vg2. In this case, the expressions for conditions
as well as power gain of modulation instability can be
obtained under f1f2 < CXPM,

g (Ω) = 2Im(k) =
√

2{[(f1 + f2)2

+4(CXPM − f1f2)]1/2 − (f1 + f2)}1/2. (6)

Generally speaking, however, taking into account the
group velocity mismatch would be more accurate. Under
this circumstance, it is difficult to obtain the analyti-
cal solution of Eq. (2) and the corresponding analytical
expression for power gain coefficient of modulation in-
stability. Accordingly, numerical processing is needed to
solve Eq. (2) and discuss the modulation instability. To
do so, one can set δ = V −1

g1 − V −1
g2 and K = k − Ω

Vg2
,

where δ is the group velocity mismatch parameter. After
substituting these assumptions in Eq. (2), one can obtain{

(K − δΩ)2 − f1

} {
K2 − f2

}
= CXPM. (7)

For the relation Im(k) = Im(K) holds, the power gain
of modulation instability, which equals 2Im(K), can be
obtained by numerical solving Eq. (7). Our numerical
simulation indicates that four roots of Eq. (7) which cor-
respond to the four gain spectra of modulation instability
actually consist of two couples of conjugate roots. But
only the spectrum, which has the most number of the
separated spectral regions, is adopted in the following
discussion.

If the wavelength difference of the two optical waves
is not too big, one can assume that γ11 ≈ γ12 = γ1,
γ21 ≈ γ22 = γ2, α1 ≈ α2 = α. Further, when the
third-order group velocity dispersion coefficient is small
enough and negligible, one can also set β21 ≈ β22 = β2

as Ref. [17]. The common parameters used in the fol-
lowing calculations are γ1 = 1 W−1·km−1, z = 1 km,

P1 = P2 = 500 W, α = 0.2 dB/km. And the concrete
value of parameter γ2 is set by consulting Ref. [18].

Figure 1 shows the gain spectra of cross-phase mod-
ulation induced modulation instability in the normal
dispersion regime for different group-velocity mismatch
parameters when the quintic nonlinearity coefficients
are (a) γ2 = 6 × 10−5 W−2·km−1, (b) γ2 = 0, and
(c) γ2 = −6 × 10−5 W−2·km−1, respectively. β2 = 20
ps2/km. Comparing Figs. 1(a) with (b) and (c), one can
realize that when the group-velocity mismatch parameter
and other parameters are the same, the positive quintic
nonlinearity makes the spectral width wider and the peak
value of the spectra higher. That is to say, modulation
instability can occur in a wider frequency region and the
perturbation optical field will grow faster in the case of
positive quintic nonlinearity. While the negative quintic
nonlinearity decreases the spectral width as well as the
peak value of the spectra. In other words, in case of
the group-velocity mismatch, the positive and negative
quintic nonlinearities still enhance and weaken the mod-
ulation instability, respectively. This result accords with

Fig. 1. Gain spectra of cross-phase modulation induced mod-
ulation instability (MI) in the normal dispersion regime for
different group-velocity mismatch parameters when the quin-
tic nonlinearity coefficients are (a) γ2 = 6×10−5 W−2·km−1,
(b) γ2 = 0, and (c) γ2 = −6 × 10−5 W−2·km−1, respectively.
β2 = 20 ps2/km.
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Fig. 2. Gain spectra of cross-phase modulation induced mod-
ulation instability (MI) in the abnormal dispersion regime for
different group-velocity mismatch parameters when the quin-
tic nonlinearity coefficients are (a) γ2 = 6×10−5 W−2·km−1,
(b) γ2 = 0, and (c) γ2 = −6 × 10−5 W−2·km−1, respectively.
β2 = −20 ps2/km.

that of Ref. [20]. It can also be seen that, the group-
velocity mismatch can considerably alter the gain spec-
trum in terms of its shape, peak value, and position.
Concretely, when the other conditions are the same,
with the increase of the group-velocity mismatch param-
eter, the gain spectrum widens and then narrrows, shifts
to higher frequencies, and the peak value gets higher
before tending to a saturable value. When the quintic
nonlinearity is neglected, our simulation results here are
completely in agreement with that of Ref. [17] if other
parameters are the same.

Figure 2 shows the gain spectra of modulation instabil-
ity in the abnormal dispersion regime for different group-
velocity mismatch parameters when the quintic nonlin-
earity coefficients are (a) γ2 = 6 × 10−5 W−2·km−1, (b)
γ2 = 0, and (c) γ2 = −6× 10−5 W−2·km−1, respectively.
β2 = −20 ps2·/km. In comparison, the most obvious
characteristic of the gain spectra in the abnormal dis-
persion regime is that two separated spectra may occur
in the case of group-velocity mismatch, which is quite
different from the case of neglecting the group-velocity

mismatch where only one spectrum exists[20]. The first
spectrum is near the center wavelength and has smaller
peak value gain. The second one is far away from the
center wavelength and has higher peak value gain. When
the group-velocity mismatch parameter is small or zero,
there exists only the first spectrum. With the increase of
the group-velocity mismatch parameter, the peak value
of the gain spectrum gets higher and shorter before tend-
ing to a saturable value for the first and second spectral
regimes, respectively. Similarly, the positive and nega-
tive quintic nonlinearities also enhance and weaken the
modulation instability in this case, respectively.

According to the extended coupled nonlinear
Schrödinger equations in loss single-mode optical fibers
with cubic-quintic nonlinearity, for two optical waves
of different wavelengths with the same polarization but
with nonoverlapping spectra, the dispersion relation for
wave number k of the modulation wave is numerically
solved. The synthetic effects of group-velocity mismatch
and cubic-quintic nonlinearity on modulation instability
induced by cross-phase modulation have been numer-
ically investigated. The results show that the quintic
nonlinearity plays a similar role in the case of neglecting
the group-velocity mismatch in modifying the modula-
tion instability, namely, the positive and negative quintic
nonlinearities can also enhance and weaken the modula-
tion instability, respectively. However, the group-velocity
mismatch can considerably modify the gain spectrum of
modulation instability in terms of its shape, peak value,
and position. In the normal dispersion regime, with
the increase of the group-velocity mismatch parameter,
the gain spectrum narrows, shifts to higher frequencies,
and the peak value gets higher before approaching a
saturable value. In the abnormal dispersion regime, two
separated spectra may occur in the case of group-velocity
mismatch, which is quite different from that of Ref. [20]
where only one spectrum exists. With the increase of the
group-velocity mismatch parameter, the peak value of
the gain spectrum gets higher and shorter before tending
to a saturable value for the first and the second spectral
regimes, respectively.
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